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Abstract 

In this work, the problem of on-line monitoring of the pollutant concentrations is tackled in two biological reactors in 
series for industrial and municipal wastewater treatment. For this purpose, a software sensor is designed for on-line 
estimation of the pollutant concentrations, mainly for ammonia and biodegradable substrate. First, a reduced process 
model is developed with approximated parameters. Then the software sensor, consisting of a model-based state 
estimator to infer the (unmeasured) concentrations, is constructed based on the reduced process model and 
considering only on-line measurements of dissolved oxygen and nitrate concentrations. The software sensor 
performance is tested by comparison with the dynamic behavior of a detailed simulated plant (in a commercial 
software: GPS-X®, Hydromantis) that represents the “experimental” process, obtaining good estimated 
concentrations. The simulated plant was previously tuned with experimental data collected from the Tecnocasic 
(Cagliari, Italy), which collects industrial and municipal wastewater. 
 
Keywords: estimators, detectability, state estimation, biological reactors. 
 
Resumen 

En este trabajo se aborda  el problema de monitoreo en línea de las concentraciones de contaminantes en dos 
reactores biológicos en serie para el tratamiento de aguas residuales industriales y municipales. Para este propósito, 
se diseña un software sensor para la estimación de las concentraciones contaminantes, principalmente de amoniaco y 
substrato biodegradable. Primero, se desarrolla un modelo reducido del proceso con parámetros aproximados. Luego 
el software sensor, que consiste de un estimador de estados basado en un modelo para inferir las concentraciones (no 
medibles), se construye con base en el modelo reducido y considerando solo mediciones en línea de las 
concentraciones de oxígeno disuelto y de nitrato. El desempeño del software sensor  es probado mediante la 
comparación con el comportamiento dinámico de una planta simulada detalladamente (en un software comercial: 
GPS-X®, Hydromantis), que representa el proceso “experimental”, obteniéndose buenos estimados de las 
concentraciones. La planta simulada fue previamente ajustada con datos experimentales recolectados de la planta 
Tecnocasic (Cagliari, Italia), la cual recolecta aguas residuales industriales y municipales. 
 
Palabras clave: estimadores, detectabilidad, estimación de estados, reactores biológicos. 
 
1. Introduction 

During the last decade the interest in 
removal of pollutant compounds from 
wastewater has risen due to increasing 
attention for many reasons: regulation 
constraints, environment, water reuse, etc. 
Biological wastewater treatment is an 
essential operation for the processing of 
liquid waste, where the main objectives are 

the degradation of the organic pollutant 
compounds and the removal of nutrients such 
as nitrogen that can damage the ecosystem. In 
particular, the activated sludge process is the 
most widely used process for biological 
treatment of municipal or industrial 
wastewater. 

Working on the monitoring and control 
of biological wastewater treatment processes 
raises a number of very challenging problems 
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as (Shimizu, 1996): the lack of reliable 
sensors, the significant model uncertainty, 
and the nonlinear time-varying nature of the 
system. Indeed, if a number of on-line 
sensors providing state information are today 
available at the industrial scale, they may be 
still very expensive and their maintenance is 
usually time consuming. To overcome these 
difficulties, the notion of software sensors 
has been introduced in the early eighties. In 
fact, the software sensors simply consist of 
observers or detectors designed to estimate 
unmeasured states from the available on-line 
measurements (Dochain et al., 1997; 
Gauthier and Kupka, 1994; De Asís and 
Filho, 2000). Having an important advantage 
since software sensors can be constructed 
based on a simple model with uncertain 
inputs and parameters (Stephanopoulos and 
San, 1984). Recently, several studies have 
been reported concerning the software sensor 
design for the biological wastewater 
treatment. Many of those studies are related 
to the single aerobic process (to mention: 
Dochain and Pauss, 1988; Aubrun et al., 
2001; Bernand et al., 2001), but few works 
have tackled the (anoxic-aerobic) alternating 
process (Zhao and Kümmel, 1995; Lukasse 
et al., 1999; Larose and Jorgensen, 2001; 
Gomez-Quintero and Queinnec, 2001). The 
majority of the reported works are based on 
the extended Kalman filter (EKF) algorithm, 
while asymptotic observers are seldom used 
(Bernand et al., 2001; Larose and Jorgensen, 
2001). Moreover, the software sensor 
performances have been tested by simulation 
and few of them correspond to real 
(experimental) applications. 

The EKF (Jazwinski, 1970) is by far the 
most widely used state estimation technique. 
Its construction is systematic, but it presents 
several drawbacks, for instance: it does not 
have a systematic tuning procedure, there is 
not convergence criterion, it is sensitive to 
changes in the initial state conditions and in 
the tuning parameters, and covariance 
matrices have to be well settled to get good 

performance. On the other hand, the 
geometric system approach has presented 
high-gain low-order estimation designs with 
convergence criteria coupled to rather simple 
tuning schemes (Isidori, 1995; Ciccarella et 
al., 1993), including the cases of complete 
and partial observability (Alvarez and Lopez, 
1999); and these designs have been 
successfully tested in various simulated and 
experimental chemical processes (Van 
Dooting et al., 1992; Soroush et al., 1997). 
Thus the question is whether these low-order 
nonlinear estimation designs can be applied 
(instead of the EKF) to solve the software 
sensor problem in an alternating anoxic-
aerobic process for wastewater treatment. 

In this work, the on-line monitoring of a 
biological process (an alternating anoxic-
aerobic process) for the wastewater treatment 
is tackled, by means of a software sensor 
designed for the estimation of the pollutant 
concentrations. First, a reduced process 
model is developed with approximated 
parameters, based on concepts widely 
accepted in the wastewater community. Then 
the software sensor, consisting of a nonlinear 
geometric state estimator (Alvarez and Lopez, 
1999), is constructed to infer the 
(unmeasured) biodegradable substrate and 
ammonia concentrations, based on the 
reduced process model and considering on-
line measurements of dissolved oxygen and 
nitrate concentrations. Here it is important to 
mention that detectability conditions are 
proved and stated with physical meaning, in 
contrast to reported works for biological 
processes. Finally, the software sensor 
performance is tested by comparison with the 
dynamic behavior of a detailed simulated 
plant (in a commercial software: GPS-X®, 
Hydromantis), that represents the 
“experimental” process, obtaining good 
estimated concentrations and highlighting the 
ability of using simple and approximated 
models together with few on-line 
measurements. In particular the simulated 
plant was previously tuned with experimental 
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data collected from the Tecnocasic plant 
(Cagliari, Italy), which collects industrial and 
municipal wastewater, and its biological 
treatment is carried out by the alternating 
activated sludge process. 
 
2. Biological process 

2.1 Process description 

In general, wastewater treatment 
includes as a first step a mechanical and 
chemical treatment to remove floating and 
settleable solids, then a biological treatment 
with activated sludge for removal of 
nitrogen, phosphorus and other organic 
pollutants, and after that other operations 
such as sludge treatment and water chemical 
treatment. 

Here only the continuous alternating 
activated sludge process (AASP) is 
considered for the biological wastewater 
treatment with the main purpose of nitrogen 
removal. In general, the AASP employs 
aerated, tubular, well mixed or a series of 
well-mixed reactors to accommodate the 
biological process. In particular we are 
considering a sequence of two well-mixed 
reactors, Fig. 1. The water recycling from 
one reactor to another is common feature of 

combined stabilization-denitirification 
networks, so that a combined oxidation and 
reduction in total nitrogen content is done by 
two different conditions: (i) an anoxic zone 
that favors the pre-denitrification step, and  
(ii) an aerobic zone that favors the 
nitrification one. Afterward the reactor 
network effluent is generally fed into a settler 
to separate the stream into the clean effluent 
and sludge. The settled sludge is partly 
recycled to the first reactor (return activated 
sludge, RAS) and a fraction is purged (waste 
activated sludge, WAS) from the recycle line 
to compensate for the increase in biomass 
concentration from biomass growth during 
the biodegradation process. 

The global process is considered 
isothermal (around 20°C), and both anoxic 
(with low aeration for mixing purposes) and 
aerobic (with high aeration for reaction and 
mixing purposes) zones are controlled by the 
aeration supply by turbines. The AASP is 
very sensitive to input-flow oscillations, 
operation conditions and biomass evolution 
(Maria et al, 2000). So that, the process 
characterization requires extensive off-on line 
investigations under a wide range of 
operation conditions. 
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Fig. 1. Biological process (alternating activated sludge process). 
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2.2 Process model 

In particular, as mentioned in the 
introduction, we are considering a real case 
study: the Tecnocasic plant (Cagliari, Italy), 
which collects industrial and municipal 
wastewater, and its treatment is done by the 
AASP as described previously. Its complete 
characterization has been done previously, 
and a detailed model with identified 
parameters was previously tuned using real 
experimental data taken from the Tecnocasic 
plant (Mulas, 2001). 

The characterization was done by 
simulations in the GPS-X (a commercial 
software of Hydromantis), using the two-
step-mantis model (Technical reference 
manual, 2001) which corresponds to the so-
called IAWQ Activated Sludge Model No. 1 
(Henze et al., 1987) with two modifications: 
(a) the nitrification is modeled by a two-step 
process (the conversion of ammonia to nitrite 
by the nitrosomona bacteria and the 
conversion of nitrite to nitrate by the 
nitrobacters), and (b) the hydrolysis of 
rapidly biodegradable substrate is included. 
This complete and complex model that will 
be referred as the “actual process model” 
consists of 18 state variables (particle and 
soluble concentrations) for each anoxic and 
aerobic reactor, so that the process is 
modeled with 36 ordinary differential 
equations, including 15 reaction rates and 30 
model parameters. The actual process model 
simulation is included in order to show 
afterwards the advantages of using simple 
models together with the available 
measurements, since a great problem for 
having an exact model is the parameter 
identification which strongly changes for 
each waste and biomass type (Maria et al., 
2000). 

Since we are interested in having 
estimates of soluble concentrations (which 
are not modified by the settler, but only the 
particle concentrations that are not calculated 
here), a reduced model proposed by Gomez-

Quintero et al. (2000) is considered. 
Differently from the plant model, this one 
consists of 8 state variables: dissolved 
(

2
,P

OS
2

n
OS ), nitrate (

3
,p

NOS
3

n
NOS ), ammonia 

(
4
,p

NHS
4

n
NHS ) and biodegradable substrate 

( ,p
SS n

SS ) concentrations for each reactor zone 
(p and n denote pre-denitrification and 
nitrification, respectively); including only 5 
lumped reaction rates with 11 model 
parameters. The reduced model for the pre-
denitrification reactor is given as follows: 

 
3
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and for the nitrification reactor: 
 

( )3
3 3

n
p nNO out
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dS Q S Sdt V= −  

 1 2 52.86
1 :n nH

H
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( ) ( )2
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The lumped reaction rates are given by 
(p/n means either p or n): 

 
 

/
2,/ /3

1 1 / /
3 3 2, 2

p n
O Hp n p nNo

sp n p n
NO No O H O

KSr S
K S K S

α
  

=    + +  
 (2a) 

 
/ /

/ 4 2
2 2 / /

4 4 2, 2

p n p n
p n NH O

p n p n
NH NH O A O

S Sr
K S K S

α
  

=    + +  
 (2b) 

 
/

/ /2
3 1 /

2, 2

p n
p n p nO

sp n
O H O

Sr S
K S

α
 

=   + 
 (2c) 

 
/

2,/ 3
4 4 / /

3 3 2, 2

p n
O Hp n No

H p n p n
NO No O H O

KSr
K S K S

α η
  

=    + +  
 (2d) 

 
/

/ 2
5 4 /

2, 2

p n
p n O

p n
O H O

Sr
K S

α
 

=   + 
 (2e) 

 

The reduced model parameters (αi) are 
obtained as follows: 

1 2   H BHk X=α µ γ , 2
 A BA

A

X
Y

µα =  (3a) 

 
3  SA BH NDK X=α , 4 1   Xh BHk k=α  (3b) 

 
Where all parameters µH, µA, ηH, γ, iXB, 

YH, YA, k1, k2, kA, KA, KO2,H, KO2, kA, KNO3, and 
KNH4 (see Nomenclature for definitions) were 
identified using the software GPS-X. 
 
2.3 Test motion 

As it was aforementioned, the actual 
process model was tuned before using 
experimental data collected in the real plant, 
thus here only the result motion is presented, 
as it will be referred as the actual process 
motion. This motion, Fig. 2, is obtained with 
an operation condition that was set around the 
mean value {

3

in
NOS  

4

in
NHS , in

SS , inQ , rQ , wQ , 
V } ≈ {0.0 g/m3, 16.25 g N/m3, 118.3 g 
COD/m3, 6200 m3/d, 7800 m3/d, 560 m3/d, 
2000 m3} with some disturbances. The 
identified parameters for the reduced model, 
Eq. 3, are given in Table 1. In Fig. 2 the 
actual process motion as well as the reduced 
model motion are shown, where it can be 
seen that the reduced model gives the motion 
tendency but with significant offsets due to 
the errors in the model assumptions and 
parameter identification. With this simulation, 
it can be stated one of the tasks that the on-
line monitoring approach should do. 
Specifically in the present work we propose a 
software sensor (equivalently to a state 
estimator based on the reduced model and 
some measurements) to give good inference 
of the modeling errors in order to reach the 
actual process motion. 
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Fig. 2. Time evolution of the nitrification reactor: actual reactor ( ) and reduced model (. . . . .) motions. 

 
 

Table 1. Model parameters 
Parameter (p) Value 

YH 0.7 

iXB 0.086 g N (g COD)-1 

KO2,H 0.2 g O2 m-3 

KO2,A 0.23 g O2 m-3 

KNO3 0.1 g N m-3 

KNH4 0.8 g NH3-N m-3 

ηH 0.4 

α1 163.9 d-1 

α2 224.63 g m-3d-1 

α3 92.12 g m-3d-1 

α4 739.74 g m-3d-1 

2.4 On-line monitoring problem 

In our study case, the on-line 
monitoring problem consists on designing a 
software sensor for estimating mainly the 
ammonia and biodegradable substrate 
concentrations in the biological process exit, 
from available measurements of dissolved 
oxygen and ammonia concentrations in the 
exit flow.  

Let us start by writing the estimation 
problem in state-space notation, considering 
the next state vector: 

 
1 8[ , , ]Tx x x= K

3 2 4
[ , , , ,p P p p

NO O NH SS S S S=  

 
3 2 4
, , , ]n n n n T

NO O NH SS S S S  (4a) 
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exogenous input vector 
 

1 6[ , , ]Td d d= K
3 4

[ , , ,in in in
NO NH SS S S=  

 , , ]T
in r wQ V Q V Q V   (4b) 

 
model parameter vector 
 

1 12[ , , ]Tp p p= K 2, 2,[ , , , ,H XB O H O AY i K K=  

3 4 1 2 3 4, , , , , , ]T
NO NH HK K η α α α α  (4c) 

 
and measured output vector 
 

1 2 3 2[ , ] [ , ]T n n T
NO Oy y y S S= =  (4d) 

 
 

The reduced model, Eq. 1, can be 
rewritten as  
 

( ), ,x f x d p=&  (5a) 
 

( )y h x=  (5b) 

 
The state x (x ∈ X), the input d (d ∈ D), 

and the parameter p (p ∈ P) take values in 
the sets X, D and P, respectively, and are 
compact (i.e., bounded and closed) due to 
physical and practical considerations. The 
maps f(x, d, p) and h(x) are respectively the 
right side of Eq. 1 and Eq. 4d, and are 
sufficiently smooth (differentiable) in their 
respective domains. So that the software 
sensor will consist of a state estimator based 
on the reduced model Eq. 5a and the two 
measurements taken in the aerobic zone Eq. 
5b, and it should be robust to have tolerance 
to the modeling error and to the uncertain 
inputs and measured outputs. 
 
3. Software sensor design 

For this purpose, the design is based on 
the geometric nonlinear estimation 
methodology developed in Alvarez and 
Lopez (1999) and Lopez (2000), which has a 

systematic construction, with a robust 
convergence criterion connected to the 
convergence rate, and with a simple tuning 
procedure. It is worth of mention that our aim 
is the development of a software sensor for 
our case study by using this low-order 
nonlinear estimation design (instead of the 
EKF), so that the estimator details can be 
found in the aforementioned works. Next the 
detectability analysis, the estimator 
construction and tuning are presented for our 
specific case study. 
 
3.1 Estimation structure 

According to Alvarez and Lopez 
(1999), the motion x(t) of the biological 
process, Eqs. 5, can be completely observable 
with observability indices (κ1, κ2) = (4, 4) for 
the two measured outputs, Eq. 5b, proposed 
here, however the observability property 
would be weak (i.e. with an observability 
matrix ill-conditioned due to the third time-
derivatives required). Taking as a point of 
departure the results on the effect of the 
estimation structure in the estimator 
functioning given in Lopez and Alvarez 
(2004), the biological process can be 
detectable (i.e. partial observable) with 
several estimation structures (i.e. combination 
of the observability indices and of the 
observable-unobservable state partition). 
Moreover, between all of the possible 
estimation structures, the one that keeps the 
tradeoff between robustness and performance 
is the corresponding one with observability 
indices  
 

 (κ1, κ2) = (2, 2) (6) 

 
and with the state partition (xI and xII are the 
observable and unobservable states, 
respectively) 
 

5 6 7 8[ , , , ]T
Ix x x x x= , 1 2 3 4[ , , , ]T

IIx x x x x=  (7) 
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The detectability property follows from 
the assessment of the two following 
conditions [along the reactor motion x(t)]: 
 
(i) The map φ(x, d, p), Eq. 8, has to be 

invertible for xI. 
(ii)The motions of the unobservable 

dynamics xII(t) have to be stable. 
 

Where the map φ is given by the 
measured outputs and some of their time-
derivatives: 
 

( ) 1 1 2 2, , [ , , , ]Tx d p y y y yφ = & &  

( ) ( )5 5 6 6[ , , , , , , , ]Tx f x d p x f x d p=  (8) 
 

To verify that the plant motion is 
detectable for all time, the two previous 
conditions were verified. First, given the 
matrix Q (called observability matrix) 
 

 
I

Q
x
φ∂

=
∂

 (9) 

 

the invertibility condition [condition (i)] is 
equivalent to verify that Rank[Q] = κ1 + κ2 = 
4, or else, det[Q] ≠ 0 for all time. The 
corresponding determinant expression is as 
follows 
 

( )
1 2 4

2
2, 24 4

1 1[ ] NH H
nn H O H ONH NH

K Ydet Q
Y K SK S

α α  − = ⋅   + +  
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2, 32
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2, 2 3 3

0
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nn
O H No nO

On n
O A O NO No

K SS S
K S K S

  
 + >  + +   

  

(10) 
 

In fact this condition is always met 
since all model parameters are positive, 3

n
NoS  

> 0 and 2
n
OS > 0 (i.e., nitrate and oxygen 

concentrations in the nitrification reactor 
which is an aerobic zone). Moreover, it was 
also evaluated numerically as can be seen in 
Fig. 3a, showing that det[Q] > 0 for all time. 
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Fig. 3. (a) Determinant of the observability matrix, and  

(b) eigenvalues of the unobservable dynamics, along the actual reactor motion. 
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The assessment of the stability 
condition [condition (ii)] is equivalent to 
verify that the unobservable dynamics given 
by: 
 

( )1 1 1 2 3 4 5, , , , , ,x f x x x x x d p=&  (11a) 

 
( )2 2 2 3 4 6, , , , ,x f x x x x d p=&  (11b) 

 
( )3 3 1 2 3 4 7, , , , , ,x f x x x x x d p=&  (11c) 

 
( )4 4 1 2 4 8, , , , ,x f x x x x d p=&  (11d) 

 
are stable, consideringx5,x6,x7,x8

  andd 
as nominal known motions. These equations 
are stable if the eigenvalues of its linear 
system have strictly negative real part. This 
is verified also numerically along the reactor 
motion and is shown in Fig. 3b, concluding 
that the dynamics are stable.  

As the two detectability conditions are 
met, therefore the reactor motion is 
detectable, and a state estimator can be 
implemented. Furthermore, this estimation 
structure can be applied to any AASP as both 
detectability conditions are always met. 
 
3.2 Nonlinear state estimator 

Considering the previous state partition, 
Eq. 7, the reactor, Eq. 5, can be rewritten as 

 
( ), , ,I I I IIx f x x d p=&  (12a) 

 
( ), , ,II II I IIx f x x d p=&  (12b) 

 
( )Iy h x=  (12c) 

 
The construction of the geometric 

estimator (Luenberguer-like high-gain) 
follows from a straightforward consequence 

of the detectability property, according to the 
following expression (see Theorem 1 in 
Alvarez and Lopez, 1999). So that the 
estimator for our case is given by: 
 
 ( )ˆ ˆ ˆ, , ,I I I IIx f x x d p= +&  

( ) ( )1 ˆ ˆ ˆ, , , [ ]I II o IQ x x d p K y h x− −  (13a) 

 
( )ˆ ˆ ˆ, , ,II II I IIx f x x d p=&

 (13b) 

 
( )ˆ ˆIy h x=  (13c) 

 
Where Q

-1
 is the inverse of the 

observability matrix, Eq. 9, and Ko is the gain 
matrix. It can be seen that the observable part 
Eq. 13a, of the estimator has two terms: (i) 
the first one corresponds to a predictor given 
by the model, and (ii) the second one 
corresponds to a corrector driven by the 
measurement error. While the unobservable 
part, Eq. 13b, only has the predictor term 
given by the model. 

Regarding to the gain matrix, this one 
should be chosen such that the estimation 
error dynamics are stable. Some strategies for 
the estimator tuning are also given in Alvarez 
and Lopez (1999) and Lopez (2000). 
According to this, the gains can be calculated 
as follows 
 

( )

11

112
2

21 2

22

0
20 ,0

0

i i
o

i i

k
kkK k k

k

ζω
ω

 
= 

=   = 
 

 (14) 

 
where ζ  is the damping factor, which can be 
set according the literature (Stephanopoulos, 
1984) as ζ = 0.71 in order to have a response 
with moderate oscillations. While ωi is the 
characteristic frequency, which can be 
selected such that the estimator response is 



López-Arenas  et al. / Revista Mexicana de Ingeniería Química  Vol. 3  (2004)   51-63 

 60

faster than the natural reactor response. For 
this purpose, first we calculated the residence 
time (θ = 0.143 d), then to obtain an 
estimator response faster, we selected the 
estimator characteristic time as ωi >10 / θ. 
Meaning that a good initial guest can be ωi = 
70 d-1. In fact after some trials, the final 
tuning values were set as ω1 = ω2 = ω3 = 150 
d-1 (≈ 20 times faster than the natural 
dynamics). 

The convergence properties of the 
geometric nonlinear estimation methodology 
(Alvarez and Lopez, 1999; Lopez, 2000) 
ensure the asymptotic convergence of the 
state estimator for the biological process. In 
fact, the convergence criterion is in function 
of the fulfillment of the previous detectability 
conditions and of the high gain tuning. 
 
4. Implementation results 

The main objective is the on-line 
monitoring of the pollutant and biomass 
concentrations of the clean effluent. It is 
important to keep in mind that the settler 
does not modify these soluble concentrations, 
so that the soluble concentrations at the 
nitrification reactor exit are the same of the 
clean water in the settler exit, Fig. 1. Thus, 
the results for the nitrification (aerobic) 
reactor exit are shown in Fig. 4. As it was 
mentioned in Section 3.1, all concentrations 
in the pre-denitrification reactor are 
unobservable states (xII) and those ones in the 
nitrification reactor are observable states (xI). 
Meaning that the unobservable states are 
estimated only with the model [i.e., the 
predictor term in, Eq. 13b, so that their 
convergence rate is not controlled, while the 
observable ones are estimated using the 
model and a predictor term, Eq. 13a, that is 
dependent on the gain matrix Ko and the 
unobservable states. Therefore, the rate 
convergence of the estimated concentrations 
in the nitrification reactor is function of: (a) 
the tuning, which has been done as fast as 
possible to get a fast convergence, and (b) the 

slow convergence rate of the unobservable 
concentrations in the pre-denitrification 
reactor, involving an estimation delay. 
According to this, as it can be seen in Fig. 4, 
there is almost exact converge for the 
measured states ( 3 2,n n

NO OS S ). The small offsets 
in these two states are due to the frequent 
excitations especially in the dissolved oxygen 
concentration as a consequence of the 
disturbances in the feed concentrations and 
flows. In fact, the two main concentrations of 
interest in the process exit are the ammonia 

4
n
NHS  and the biodegradable substrate n

SS , 
which show very good estimates since the 
estimator follows the tendency motion and 
the offsets are still acceptable in comparison 
with the measuring error of a concentration 
instrument. So we can say that the software 
sensor is reliable, in spite of using a reduced 
model that by itself (i.e. without the 
corrections terms added in the estimator) has 
large modeling errors as was shown before in 
Fig. 2. 

 
Conclusions 

It has been shown how to reduce a state 
estimation problem for the on-line monitoring 
of a biological process used in the wastewater 
treatment. This study highlights the ability of 
using a software sensor based upon a reduced 
model (with large model parameter errors) 
and considering only two on-line 
measurements (dissolved oxygen and nitrate 
concentrations). The software sensor 
performance was validated with a plant 
motion obtained from previous detailed plant 
characterization, showing that not always the 
use of complex models is the best way to 
obtain good process representation for 
monitoring and control purposes. The 
implementation of a software sensor gives 
promising guidelines to tackle in the future 
the problems of optimization and real time 
control of wastewater treatment plants. 
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Fig. 4. Software sensor performance (. . . . .) in comparison with the actual motion ( ) for the 

nitrification reactor. 
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Nomenclature 

Latin variables 

d Exogenous input  
f Model map  
iXB Mass  N/mass COD in biomass [-] 
Ko Observability matrix gain 
kLa Oxygen mass transfer coefficient [d-1] 
ki i-th Identified model parameter, i = 1, 2 

[-] 

kh Maximum specific hydrolysis rate  
[d-1] 

KA Ammonification rate  [m3(g COD.d)-1] 
KO2,H Aerobic oxygen half saturation coefficient 

[g O2 m-3] 
KO2,A Aerobic/anoxic oxygen half saturation 

coefficient [g O2 m-3] 
KNO3 Nitrate half-saturation coefficient  

[g N m-3] 
KNH4 Ammonia half saturation coefficient [g N 

m-3] 
p Model parameter 
Q Observability matrix  
Qn Flow rate, n = in, out, r, w [m3 d-1] 
ri i-th Reaction rate, 1 ≤ i ≤ 5 [g m-3 d-1] 
SNO3  Nitrate concentration [g N m-3] 
SO2  Dissolved oxygen concentration  

[g O2 m-3] 
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SNH4  Ammonia concentration [g N m-3] 
SND  Average soluble biodegradable organic 

nitrogen concentration  
[g N m-3] 

SS  Biodegradable substrate concentration [g 
COD m-3] 

SOST Dissolved oxygen saturation 
concentration [g O2 m-3] 

V Reactor volume [m3] 
x Process state 
XBA  Average active autotrophic biomass 

concentration [g COD m-3] 
XBH  Average active heterotrophic biomass 

concentration [g COD m-3] 
y Measured output  
YA Autotrophic yield [-] 
YH Heterotrophic yield [-] 
 
Greek variables 

α1 1st Reduced model parameter [d-1] 
αi i-th Reduced model parameter,  

i = 2, 3, 4 [g m-3 d-1] 
γ Identified model parameter  

[g-1 m3] 
ηH Correction factor for anoxic hydrolysis [-

] 
φ Observable map 
κi i-th Observability index, i = 1, 2 
µA Maximum specific autotrophic growth 

rate [d-1] 
µH Maximum specific heterotrophic growth 

rate [d-1]  
ζ Damping factor [-] 
ωi Characteristic frequency, i = 1, 2 [d-1] 
 
Subscripts 

in  influent 
r RAS 
w WAS 
out reactor exit 
eff (clean) effluent 
I observable partition 
II unobservable partition 
Superscripts 

p  pre-denitrification 
n  nitrification 
^ estimated 
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